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We study correlation functions of the Calogero-Sutherland model in the whole range of the interaction
parameter. Using the replica method we obtain analytical expressions for the long-distance asymptotics of the
one-body density matrix in addition to the previously derived asymptotics of the pair-distribution function
�D.M. Gangardt and A. Kamenev, Nucl. Phys. B 610, 578 �2001��. The leading analytic and nonanalytic terms
in the short-distance expansion of the one-body density matrix are discussed. Numerical results for these
correlation functions are obtained using Monte Carlo techniques for all distances. The momentum distribution
and static structure factor are calculated. The potential and kinetic energies are obtained using the Hellmann-
Feynman theorem. Perfect agreement is found between the analytical expressions and numerical data. These
results allow for the description of physical regimes of the Calogero-Sutherland model. The zero temperature
phase diagram is found to be of a crossover type and includes quasicondensation, quasicrystallization and
quasisupersolid regimes.
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I. INTRODUCTION

There is an ongoing interest in correlation properties of
the Calogero-Sutherland model �CSM�. From the theoretical
perspective the Calogero-Sutherland model provides a rare
example of exactly solvable model with relatively simple
structure of eigenstates. In the present work we address the
question of coherence properties of the CSM measured by
the off-diagonal correlation functions. Our study comple-
ments the previous results on the diagonal density-density
correlation properties of the CSM and allows us to draw
conclusions about the coexistence of both types of long-
range correlations in an appropriate interval of the interac-
tion parameter.

Introduced in Ref. �1�, the CSM describes a system of
particles interacting with a scale-free potential, which is in-
versely proportional to the square of the distance between
particles. The ground state wave function was shown to have
a form which is factorizable over pairs of particles. Each
factor is proportional to �xi−xj�� with xi ,xj being the coordi-
nates of particles forming a pair and the parameter � being
directly related to the interaction strength. In addition to the
convenient description of the excitations in terms of nonin-
teracting particles with fractional statistics �2�, this particular
form of the ground state suggested a possibility to study
correlation functions of this model.

Indeed, it was noted in �1� that for three special values
�=1/2 ,1 and 2, the ground state probability of the CSM
coincides with the probability distribution of the eigenvalues
of unitary random matrices, so the early results of Dyson �3�
describe the static density correlations in the CSM. The anal-
ogy with random matrix theory allows also the calculation of
dynamical density correlations �4� and dynamical Green’s
function �5,6�. To deal with other values of interactions the
Jack polynomial method has been applied to find correlation
functions for integer �7� and rational �8� values of �. The
common drawback of these methods for a rational �= p /q is

that the final expression for the correlation function is usu-
ally given as a sum over fractional excitations involving
p+q particle and hole quantum numbers, which goes over
p+q integrals in the thermodynamic limit. Such a decompo-
sition makes the result appear as a highly irregular function
of the coupling constant �, leaving little hope of approaching
its irrational values.

Recently, there has been success �9� in obtaining the
density-density correlation functions of the CSM for arbi-
trary coupling �, leading to transparent asymptotic expres-
sions in the long-distance limit. Based on the replica method
from the theory of disordered systems, this approach in-
volves the representation of the correlation functions using a
duality transformation as an m-dimensional integral with
eventual analytic continuation in m. Similar methods were
applied recently �10� to study off-diagonal correlations of
one-dimensional impenetrable bosons, equivalent to the
bosonic CSM for one specific value of �=1. For recent
progress in calculation of correlation functions of integrable
models such as Heisenberg spin chain see Ref. �11� and ref-
erences therein. Results for delta-interacting bosons can be
found in Ref. �12�.

In this paper we extend the replica method for studying
the off-diagonal correlations �equal-time Green’s function�
and corresponding momentum distributions. The main result
is the exact long-distance asymptotic behavior of the one-
body density matrix in the form of the Haldane’s universal
hydrodynamic expansion �13�. We consider both bosonic and
fermionic statistics of the particles encoded in the symmetry
of the wave functions using the definitions of the original
work of Sutherland �1� �see also Ref. �5��. Being irrelevant
for the density correlations, the quantum statistics affects
drastically the results for the off-diagonal correlations.

In addition, we study the short-distance behavior of the
one-body density matrix and find several leading terms �ana-
lytic and nonanalytic� in the short-distance expansion. The
latter is directly related to the high-momentum tails of the
momentum distribution. The short-distance �high momen-
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tum� physics enters the expressions for potential and kinetic
energies which we calculate as a function of interactions by
using the Hellmann-Feynman theorem.

To check our predictions we use a Monte Carlo method to
calculate numerically the correlation functions for arbitrary
distances and different values of the interaction parameter.
The advantage of the Calogero-Sutherland model is that its
ground state wave function is known explicitly and can be
easily sampled by Metropolis algorithm. This permits us to
obtain unambiguous results for intermediate distances, where
analytical methods fail.

Combining these results with previous knowledge of the
diagonal two-body correlations �pair distribution function�
�9� allows us to describe different physical regimes of the
CSM at zero temperature. In particular, we discuss long- and
short-range order as a function of the coupling constant � for
diagonal and off-diagonal correlations. Since the true long-
range order is absent in one dimension, we define it through
the correlation function of the �local� order parameter which
has the slowest power-law decay and use the word “quasi” to
stress this peculiarity of one dimension. We propose a phase
diagram which describes �in order of increasing interaction
strength� the crossover between three physical regimes: the
quasicondensate, quasisupersolid, and quasicrystal.

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian of the Calogero-Sutherland model, its solu-
tion for the ground state and define correlation functions of
interest. In Sec. III we present the calculation of the one-
body density matrix based on the replica method and discuss
the thermodynamic limit in Sec. IV. Results for the short-
distance behavior of the one-body density matrix and discus-
sion of the kinetic and potential energies are found in Sec. V.
Section VI is devoted to numerical Monte Carlo simulations
and discussion of the physics of the CSM. In Sec. VII we
propose the phase diagram of the CSM and draw our con-
clusions. The Appendix contains mathematical details of our
calculations.

II. THE CALOGERO-SUTHERLAND MODEL

We consider a finite system of N particles of mass m on a
ring of length L. The Hamiltonian of the Calogero-
Sutherland model is given by the sum of the kinetic energy
and pair interactions controlled by parameter �,

H =
�2

2m
�− �

i=1

N
�2

�xi
2 + ��� − 1��

i�j

�2/L2

sin2���xi − xj�/L�� .

�1�

The interaction between two particles on the ring is inversely
proportional to the square of the chord distance between
them. It becomes an inverse square potential in the thermo-
dynamic limit.

The ground state wave function of the Hamiltonian �1�
was found in Ref. �1� and can be written as

��x1, . . . ,xN� = CN����
k�l

�e2�ixk/L − e2�ixl/L��. �2�

Here CN��� is the normalization constant given by

CN
2 ��� =

1

LN

��1 + ��N

��1 + �N�
. �3�

The expression �2�, as it stands, is valid only for a par-
ticular ordering of particles, for instance x1�x2� ¯ �xN.
To extend the expression �2� to other ordering configuration
one must specify the quantum statistics �bosonic or fermi-
onic� of the particles. We modify the expression �2� to take
into account the symmetry under permutation of the particle
coordinates

�B,F�x1, . . . ,xN� = CN����
k�l

	e2�ixk/L − e2�ixl/L	�SB,F, �4�

by introducing the factor SB,F such that for bosons SB=1,
while for fermions SF= �−1�P is the parity of the permutation
P, where xP1

�xP2
� ¯ �xPN

. As we shall see different
quantum statistics of particles is crucial for off-diagonal cor-
relations, which was already noted in the context of the
Calogero-Sutherland model in early works �1�.

The main quantity of interest is the one-body density ma-
trix which in terms of the ground state wave function is
written as

g1
B,F�x − y� = N


0

L

dN−1x�B,F
* �x1, . . . ,xN−1,x�

��B,F�x1, . . . ,xN−1,y� . �5�

Due to the translational invariance in a homogeneous system
the one-body density matrix is a function of the difference
x−y only. Knowledge of the one-body density matrix en-
ables one to calculate the momentum distribution as the Fou-
rier transform,

nk =
 dxe−ikxg1�x� . �6�

The one-body density matrix has dimensions of density and
is normalized so that g1�0�=n, where n=N /L is the particle
density. The momentum distribution nk is dimensionless, it is
defined for kl=2�l /L, where l is an integer, and is normal-
ized to the total number of particles �knk=Lg1�0�=N.

In addition to the off-diagonal correlation functions we
consider the two-body density matrix �pair distribution func-
tion�. It is defined as

g2�x − y� = N�N − 1� 
 dN−2x	��x1, . . . ,xN−2,x,y�	2. �7�

The static structure factor is related to g2�x�:

Sk = 1 +
1

n

 dxe−ikx�g2�x� − n2� . �8�

The two-body density matrix has dimensions of density
squared and is normalized so that limx→	g2�x�=n2, while the
static structure factor is a dimensionless quantity and
limk→	 Sk=1. It is independent of statistics, as it involves
only the absolute value of the ground state wave function. In
the next section we calculate analytically the one-body den-
sity matrix �5�. The results for the pair distribution function
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�7� were obtained in Ref. �9� and we reproduce them in Sec.
VI D.

III. ONE-BODY DENSITY MATRIX

To calculate the one-body density matrix we define the
dimensionless function G1�
� such that g1�x�=nG1�2�x /L�
and G1�0�=1. Factorizing the ground state wave function �4�
we rewrite the definition �5� in the form of the average

G1�
� =
������1 + �N�
2�����1 + N����

j=1

N

	1 − ei�j	�	ei
 − ei�j	��
N,�

,

�9�

where the average is defined as


f�ei�1,ei�2, . . . ,ei�N��N,� =
�N�1 + ��
��1 + �N�

�

0

2� dN�

�2��N 	�N�ei��	2�

�f�ei�1,ei�2, . . . ,ei�N� , �10�

and �N�z� is the Vandermonde determinant

�N�z� = ��z1,z2, . . . ,zN� = �
i�j

�zi − zj� . �11�

Here we have changed the number of particles from N to
N+1 in order to deal with N dimensional integrals. This
difference does not matter in the thermodynamic limit, and
for the finite system we will restore the correct number of
particles in the final expressions.

To calculate the average in �9� we use the replica trick,
along the lines of the calculation in Refs. �9,10�. Namely,
consider the following function:

Zm
����
� =��

j=1

N

�1 − ei�j�m�ei
 − ei�j�m�
N,�

. �12�

It can be shown along the lines of Ref. �14� that G1�
� is
obtained from Zm

����
� by the analytical continuation m→�.
Later we discuss this procedure in some detail and show how
the quantum statistics of the particles, bosonic or fermionic,
appears naturally in our calculations. For the moment we
take advantage of the duality transformation �15�, which en-
ables one to reexpress the N-dimensional integral �12� de-
pending on the parameter m as a m-dimensional integral de-
pending on N as a parameter:

Zm
����t� =

e−iNm
/2

Sm�1/��
0

1

dmx	�m�x�	2/�

��
a=1

m

xa
�1/��−1�1 − xa��1/��−1�1 − �1 − ei
�xa�N. �13�

The duality �↔1/� becomes evident by comparing the
power of Vandermonde determinants in Eqs. �10�, �12�, and
�13�. We set Zm

����0�=1, so the normalization constant is
given by the Selberg integral:

Sm�1/�� = 

0

1

dmx	�m�x�	2/��
a=1

m

xa
�1/��−1�1 − xa��1/��−1

= �
a=1

m
�2� a

����1 + a
��

��1 + 1
����m+a

� � . �14�

The dual representation is an excellent starting point for
the asymptotic expansion in the large N limit. In this limit
the main contribution to the integral over each variable xa
comes from the limits of integration x+=1 and x−=0, so we
expand close to these points,

xa = x− +

a

N�1 − ei
�
, a = 1, . . . ,l , �15�

xb = x+ −

b

N�1 − e−i
�
, b = l + 1, . . . ,m . �16�

To the leading order in N the stationary action is

�1 − �1 − ei
�xa�N = �e−
a, a = 1, . . . ,l ,

eiN
e−
a, a = l + 1, . . . ,m ,

�17�

and the Vandermonde determinants factorize as

�m�x� � � 1

N�1 − ei
��
l�l−1�/2� 1

N�1 − e−i
��
�m−l��m−l−1�/2

��l�
a��m−l�
b� , �18�

which allows the calculation of the remaining fluctuation
contributions in the form of the Selberg integrals �16� as
follows:

Il�1/�� = 

0

	

dl
	�l�
�	2/��
a=1

l


a
�1/��−1e−
a = �

a=1

l
�� a

����1 + a
��

��1 + 1
�� .

�19�

Collecting factors arising from the change of variables
�16� and summing over all 2m saddle points yields the fol-
lowing result:

Zm
����
� = �

l=0

m

�− 1��m/����m/2�−l�Hm
l ���

ei�N+�m/�����m/2�−l�


�2N sin 

2 ���l2+�m − l�2�/��

,

�20�

where the factors

Hm
l ��� = �m

l
� Il�1/��Im−l�1/��

Sm�1/��
�21�

include the combinatorial factor arising from the number of
ways to choose l variables xa close to one saddle point, x−
say, and m− l variables xb in the vicinity of the other saddle
point. Having established the asymptotic expression �20�
valid for integer m we consider separately the analytic con-
tinuation m→� for bosons and fermions.
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A. Bosonic statistics

To obtain the bosonic one-body density matrix one should
treat m as an even integer before taking the limit m→�. In
this case the main contribution to the sum �20� comes from
the central point l=m /2. It behaves as �N sin�
 /2��−m2/2� and
substituting m=� yields the result expected from the confor-
mal field theory G1��N sin�
 /2��−�/2. To perform analytic
continuation we rearrange the sum by changing the summa-
tion index l=m /2+k and letting k run from −	 to +	. The
coefficient of the dominant �k=0� term is given by A�

2���
=limm→� Hm

m/2. The analytic continuation of this expression
is described in detail in Appendix. The result is

A���� =
�1/2�1 + ��
��1 + �/2�

exp

0

	 dt

t
e−t��

4
−

2�cosh t
2 − 1�

�1 − e−t��et/� − 1�
� .

�22�

The coefficients Dk
2���=limm→� Hm

m/2+k /Hm
m/2 of the oscil-

lating k�0 terms are obtained straightforwardly,

Dk��� = lim
m→�

�
a=1

k
��m/2+a

� �
��m/2+1−a

� � = �
a=1

k
�� 1

2 + a
��

�� 1
2 + 1

� − a
�� �23�

and can be calculated recursively

D1��� =
�� 1

2 + 1
��

�� 1
2� , Dk+1��� =

�� 1
2 + 1

� + k
��

�� 1
2 − k

�� Dk��� .

�24�

The correlation function is thus represented as a sum of
one smooth component and oscillatory corrections due to the
short-distance correlations:

G1
B�
� �

A�
2���

	2X	�/2�1 + 2�
k=1

	

�− 1�kDk
2���

cos�kN
�

	2X	2k2/� � .

�25�

Here we have changed the number of particles back to N,
and defined X= �N−1�sin�
 /2�. From the last expression one
sees that if � is an even integer the infinite sum in the ex-
pression �25� becomes finite. For �=2n the correlation func-
tion contains only n oscillatory components.

B. Fermionic statistics

To deal with fermions, m must be considered as an odd
integer prior to the limiting procedure m→�. In this case the
dominant contribution to the sum �20� comes from the terms
l= �m±1� /2, which being combined together for m→� lead
to the oscillating behavior �2 sin� 1

2 �N+1�
� /
��2N sin�
 /2���/2+1/2� of the one-body density matrix. This
behavior is again in complete agreement with the conformal
field theory. The coefficient of this term C�

2���
=limm→� Hm

�m+1�/2 is calculated by an analytic continuation as
explained in the Appendix. The result is

C��� = �1/2���
��1/2 + 1/2��
��1/2 + �/2�

exp

0

	 dt

t
e−t��

4
−

1

4�

+
2et/2��cosh t

2� − cosh t
2�

�1 − e−t��et/� − 1�
� . �26�

and the coefficients Fk
2���=limm→� Hm

�m+k�/2 /Hm
�m+1�/2 are

given by

Fk��� = ��2 − �2k − 1�2

�2 − 1
�1/2

�
a=1

k−1
��1 + 1+2a

� �
��1 + 1−2a

� � , �27�

or by the recursion relation

F1��� = 1, Fk+1��� = ��2 − �2k + 1�2

�2 − �2k − 1�2�1/2��1 + 1+2k
� �

��1 + 1−2k
� �Fk��� .

�28�

Restoring the number of particles and using
X= �N−1�sin 


2 , the fermionic one-body density matrix is fi-
nally given by a sum of oscillatory terms:

G1
F�
� �

C2���
	2X	��/2�+�1/2��−1

1

X
�
k=1

	

�− 1�k−1Fk
2���

�
sin��k − 1/2�N
�

	2X	2k�k−1�/� . �29�

For �=2n−1 the total number of terms in the sum is n.

IV. THERMODYNAMIC LIMIT

We now take the thermodynamic limit of the
above expressions by recalling that 
=2�x /L so that
X=N sin��x /L���xN /L=�nx=kFx in the limit of infinite
N and L. Here we have also defined kF=�n, the Fermi mo-
mentum by analogy with free one-dimensional spinless fer-
mions. In the thermodynamic limit the expressions �25� and
�29� become

g1
B�x�
n

�
A2���

	2kFx	�/2�1 + 2�
m=1

	

�− 1�mDm
2 ���cos 2mkFx

	2kFx	2m2/� � ,

�30�

g1
F�x�
n

�
C2���

	2kFx	��/2�+�1/2��−1

1

kFx

��
m=1

	

�− 1�m−1Fm
2 ���sin�2m − 1�kFx

�2kFx�2m�m−1�/� . �31�

These expressions agree completely with the results of
Haldane based on the universal hydrodynamic theory for
compressible quantum fluids �13�. The power-law universal
decay of correlations with the distance provides the value of
the corresponding Luttinger parameter K=1/�. The coeffi-
cients A��� �22�, Dm��� �23� for bosons and C��� �26�, Fm���
�27� for fermions, are model-specific nonuniversal numbers.
They are strikingly similar to the analogous coefficients
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which appear in the correlation functions of the Heisenberg
spin chain �17�. Here we derive them for the first time in the
case of the Calogero-Sutherland model.

From the expressions �30� and �31� we extract the singu-
lar behavior of the momentum distribution using the defini-
tion �6�. For bosons, the leading term in �30� yields the lead-
ing divergence for small momenta:

nk �
2


�
A2�����
�cos

�


2
� k

kF
�−


, �32�

where the critical exponent 
=
��� is defined as 
=1
−� /2. This result is valid for 0���2, so that 0�
�1. For
the special value of �=1, which corresponds to the system of
impenetrable bosons �18� we have 
=1/2. For the value �
=1/2 Sutherland �5� was using a numerical estimate to sug-
gest 
=1/�2=0.707¯ . We report here the exact value 

=3/4. For �=2 the critical exponent 
=0 is consistent with
the logarithmic divergence found in Ref. �1�. The oscillating
terms in �30� contribute to the weaker singularities at the
points k= ±2kF , ±4kF , ¯ .

For fermions, due to the oscillating character of the one-
body density matrix the dominant singularities appear at k
= ±kF. The leading behavior is extracted from the first term
in �31�. For k→kF we have

nk −
1

2
�

2−�C2���
��

��1 − ��cos���� − 1�
2

�� k − kF

kF
��

�sgn�kF − k� �33�

and similarly for k→−kF. The critical exponent is defined as
�=����=��1/��=� /2+1/2�−1, so that the power law be-
havior of the momentum distribution is the same for � and
1/�. The result �33� is valid for 0���1 which implies 2
−�3���2+�3. For �=1 we have free fermions and ��1�
=0 corresponding to the Fermi-Dirac distribution. In the
other special cases we have ��1/2�=��2�=1/4. Additional
singularities exist at k= ±3kF , ±5kF , ¯ .

V. SHORT-DISTANCE CORRELATIONS OF THE
CALOGERO-SUTHERLAND MODEL

The results in the preceding section provide the long-
distance behavior of the one-body density matrix for the
Calogero-Sutherland model and consequently the small-
momenta behavior of its momentum distribution. It is also
possible to extract the short-distance properties of this
model. We use the method introduced by Olshanii and Dun-
jko �19� to relate the tails of the momentum distribution to
singularities of the wave function. To present this method we
consider bosonic statistics and discuss later the correspond-
ing modifications for fermions.

The momentum distribution �6� is rewritten in the follow-
ing form:

nk = n
 dx2 ¯ dxN	��k,x2, . . . ,xN�	2, �34�

where we have defined the Fourier transform of the ground
state wave function �2� with respect to its first coordinate:

��k,x2, . . . ,xN� = 

0

L

dxe−ikx��x,x2, . . . ,xN�

= CN��� �
2�k�l�N

	e2�xk/L − e2�xl/L	�

�

0

L

dxe−ikx�
l=2

N

	e2�x/L − e2�xl/L	�.

�35�

The remaining integral can be evaluated using the following
property of Fourier transforms. Let f�z� have a singularity of
the form f�z�= 	z−z0	
g�z� where g�z� is regular at z=z0 and

�−1, a�0,2 ,4 , ¯ . Then



−	

+	

dze−ipzf�z� = 2 cos���
 + 1�
2

���1 + 
�
g�z0�e−ipz0

	p	
+1

+ O� 1

p
+2� . �36�

If f�z� has several singularities, then the right-hand side
equals the sum of the corresponding contributions. Using this
fact and �36�, the large-k behavior of the wave function �35�
is determined by the singularities at the positions of the re-
maining particles,

��k,x2, . . . ,xN� �
2

	k	�+1�2�

L
��

cos���� + 1�
2

���1 + ��

�CN��� �
2�k�l�N

	e2�xk/L − e2�xl/L	�

� �
j=2

N

e−ikxj�
l�j

	e2�xj/L − e2�xl/L	�. �37�

Substituting this expansion into �34� and keeping only
k-independent diagonal terms in the double sum leads to the
following result for the asymptotic behavior of the momen-
tum distribution:

nk � KN���� kF

k
�2+2�

, �38�

with the constant KN��� defined by the following average in
the ground state of N−1 particles:

KN��� =
22+2�

�2 cos2���� + 1�
2

��3�1 + ����1 − � + �N�
N2���1 + �N�

�
 dx2 ¯ dxN	��x2, . . . ,xN�	2

��
l=3

N

	e2�x2/L − e2�xl/L	2�. �39�

The result �38� is valid also for fermions for ��1,3 , . . .,
with a modification of the proportionality constant:

K˜N��� = tan2���� + 1�
2

�KN��� . �40�
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The result �38� suggests the following short range expan-
sion for the one-body density matrix as a sum of analytic and
nonanalytic functions:

g1�x�
n

= 1 + c1���kFx +
c2���

2!
�kFx�2 +

c3���
3!

�kFx�3

+ ¯ + a���	kFx	1+2� + O�	kFx	2+2�� . �41�

The coefficients cl��� in the Taylor expansion of the analytic
part of g1 are the corresponding moments of the momentum
distribution

cl��� =
il

nl 
 dk

2�n
klnk. �42�

Due to the time-reversal symmetry the momentum distribu-
tion is an even function, g1�x� is real and odd moments van-
ish. The nonanalytic part of the one-body density matrix
starts as 	x	2�+1 with the coefficient which can be related to
the high-momentum tails �38� using �36�:

a��� =
�KN���

2 cos���1 + �����2 + 2��
. �43�

Nonanalyticity of the density matrix at x=0 reflects the fact
seen already from �38� that the lth moment cl��� diverges for
l�2�+1.

Provided they exist, the moments c2l are the same for
bosons and fermions, a fact noticed by Sutherland in Ref.
�5�. Therefore for sufficiently large � the fermionic and
bosonic one-body density matrices have the same leading
Taylor expansion. This fact is easily explained on physical
grounds, noticing that the strong repulsion prevents all ex-
change effects and particles do not “feel” the quantum sta-
tistics.

The second moment c2��� can be calculated explicitly
since it is given by minus the kinetic energy per particle �in
units of the Fermi energy�. To obtain it one uses the
Hellman-Feynman theorem to extract the potential energy
from the dependence of the total energy on the strength of
the particle-particle interaction. The ground state energy of
the Calogero-Sutherland Hamiltonian �1� is known exactly
�1� and is equal to

E

N
=


H�
N

=
�2�2

6

�2n2

m
. �44�

We note that the potential energy is linear in g=���−1�
and can be obtained by differentiating the ground state en-
ergy,

Epot

N
=

g

N
� �

�g
H� =

g

N

�

�g

H� =

�2�2�� − 1�
3�2� − 1�

�2n2

m
, � � 1/2.

�45�

The kinetic energy is then obtained as a difference of the
total ground state energy �44� and potential energy �45�,

Ekin

N
=

E − Epot

N
=

�2�2

6�2� − 1�
�2n2

m
, � � 1/2. �46�

Finally, for the second moment c2 we obtain the following
expression:

c2 = −
�2

3�2� − 1�
. �47�

We plot the total, kinetic and potential energies in Fig. 1.
The total energy is always positive and the compressibility
also remains positive so that the system is �thermo-� dynami-
cally stable. The case ��1 corresponds to repulsion between
fermions while for ��1 the interaction between fermions is
attractive. The ground state energy is independent of statis-
tics, yet the interpretation for bosons is more involved: the
ground state wave function �4� always describes repulsion
between particles, despite the negative value of the potential
energy for ��1. This paradox is due to the singular charac-
ter of interactions, namely the requirement that wave func-
tions are zero for coinciding positions of the particles.

As can be seen in Fig. 1 both the kinetic and potential
energies diverge as �→1/2. It corresponds to the critical
value of the coupling constant g=���−1�=−1/4, below
which particles fall to the center �1,20�. For ��1/2 the ex-
pression �46� is not valid, since it predicts negative expecta-
tion value for the kinetic energy. The same applies to the
potential energy �45�. However the total energy is finite and
analytic in the full range ��0, as follows from Eq. �44�.
Approaching the value �=1/2 from above the divergences
of kinetic and potential energies cancel each other. In the
interval 0���1/2 one cannot evaluate separately the po-
tential energy using the Hellmann-Feynman theorem �45�
due to the singular character of the ground-state wave func-
tion in this regime. To the best of our knowledge, this in-
triguing behavior has not been noticed in the literature on the

FIG. 1. Ground state energy of the CSM as a function of the
interaction parameter �: solid line, total energy per particle �44�;
dashed line, kinetic energy per particle �46�; dotted-dashed line,
potential energy per particle �45�. Energies are measured in units of
�2n2 /m.
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Calogero-Sutherland model despite the simple analysis based
on use of the Hellmann-Feynman theorem.

VI. NUMERICAL RESULTS AND DISCUSSION

A. Monte Carlo method

Quantum Monte Carlo methods have been successfully
applied to the investigation of the equation of state and cor-
relation functions in a number of one-dimensional systems
�21–23�. We resort to the Quantum Monte Carlo technique in
order to evaluate multidimensional integrals Eqs. �5� and �7�
numerically. This calculation of the correlation functions is
exact in a statistical sense, the small statistical uncertainty
can be reduced by increasing the length of the simulation
runs. An advantage of the CSM is that the ground state wave
function is known exactly and can be written in a simple
explicit way, as given by Eq. �4�, thus facilitating the calcu-
lations at zero temperature. Another important advantage of
the CSM is related to the “sign problem” of fermionic Monte
Carlo simulations. Here the permutation term can be factor-
ized leading to a much simpler and efficient code than in
three-dimensional systems, where the symmetrization of the
fermionic wave function leads to the evaluation of Slater
determinants. We use the Metropolis �24� algorithm for sam-
pling the square of the wave function and generating a series
of states �Markovian chain� having the desired probability
distribution. The correlation functions are then calculated as
averages over the Markovian chains. The calculation of the
one-body density matrix g1�x� is performed by displacing a
certain particle �let us choose x1 as an example� by a
distance x, so that x1�=x1+x and averaging the
ratio ��x1� ,x2 , . . . � /��x1 ,x2 , . . . �=sB,F�i�1 	sin�x1�−xi� /
sin�x1−xi�	� where sB=1 and sF=�i�1sgn�x1�−xi� / sgn�x1

−xi�. The average is performed with the probability distribu-
tion 	��x1 , . . . ,xN�	2. Similarly, we accumulate the pair dis-
tribution function by following the Markovian chain gener-
ated by the Metropolis algorithm and measuring the
interparticle distance. The momentum distribution and static
structure factor are calculated by means of Fourier trans-
forms as defined by Eqs. �6� and �8�. In what follows we
present our results for the correlation functions in different
interaction regimes.

B. One-body density matrix

The results for the one-body density matrix are presented
in Fig. 2 for Bose-Einstein and Fermi-Dirac statistics. Com-
paring the numerical results to Eqs. �30� and �31� we find
that the asymptotic expansion works extremely well even for
distances of the order of mean interparticle separation. It is
important to note that the series �31� and �30� are asymptotic
rather than convergent. The larger the distance x the more
terms should be summed, while small distances are well de-
scribed with only a few terms in the sum.

It is easy to see from Eq. �30� that the off-diagonal long-
range order is absent as g1�x� always vanishes for large x.
Still, for bosons and for small values of � the leading term
g1�x��A2 / 	2�x	�/2 has a slow power-law decay, which is a
manifestation of a quasi-off-diagonal long-range order or

quasi-condensation. This behavior is shown in Figs. 2�a� and
2�b� for small values of � corresponding to weak interaction
between particles. The smaller � is, the more pronounced is
the presence of a quasicondensate. In this regime the one-
body density matrix remains significantly different from zero
even at distances much larger than the mean interparticle
distance. The slowly decaying off-diagonal correlation in this
regime is well described by the dominant term in the expan-
sion �30�. Oscillating corrections, corresponding to m�1
terms in Eq. �30�, decay rapidly on the scale of a few inter-
particle separations and are unimportant in this regime.

In this regime the off-diagonal correlations in fermionic
systems are qualitatively different. For fermions, the one-
body density matrix drops quickly from unity and oscillates
around zero. In the fermionic case the main contribution to
the long range asymptotics comes from the leading oscillat-
ing m=1 term, Eq. �31�.

With increasing � the oscillating m�0 terms in the long-
range expansion of the bosonic one-body density matrix, Eq.
�30�, become important. Those contributions introduce oscil-
lations corresponding to momenta 2mkF ,m=1,2 , . . ., where
kF=�n is the Fermi momentum. This behavior can be attrib-
uted to the short-range order in the Calogero-Sutherland
model, which becomes more important as the interaction
strength increases. The results for intermediate values of in-
teractions are depicted in Figs. 2�b�–2�e�.

For a bosonic system these short-range correlations are a
manifestation of “fermionization.” Indeed, for �=1 the
bosonic CSM becomes equivalent to a system of zero-range
impenetrable bosons having the density correlations of free
fermions. The correlation functions involving the phase are,
however, drastically different and were the subject of the
classic works of Refs. �25,26�. Recently there has been a
revival of interest in this model �10,19,21,27� due to realiza-
tion of impenetrable bosons in several experiments with cold
atoms �28�. For the fermionic CSM at �=1, the one-body
density matrix is given by a standard expression for one-
dimensional spinless fermions,

g1
F�x�
n

=
sin kFx

kFx
, � = 1. �48�

It is interesting to note that the asymptotic expansion �31� is
exact for �=1. The results for the one-body density matrix at
�=1 are shown in Fig. 2�b� both for free fermions and im-
penetrable bosons.

In the regime ��1 the system enters the quasicrystal re-
gime. The off-diagonal decay of the one-body density matrix
is greatly enhanced. The oscillating terms in Eq. �30� become
relevant and oscillations in g1

B�x� start to be visible �see Figs.
2�d� and 2�e�� which reflects the appearance of the short
range quasicrystal order. For �=2 the bosonic one-body den-
sity matrix is known exactly �1� and is given by the expres-
sion

g1
B�x�
n

=
Si�2kFx�

2kFx
, � = 2, �49�

where Si�x� is the sine integral function. The expression �30�
gives g1

B /n=� /4kFx−cos 2kFx /4kF
2x2 which coincides with
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the large x expansion of �49�. We note that this behavior of
g1

B�x� is critical between long-range and short-range correla-
tions, in the sense that the integral of g1

B�x� over space di-
verges for ��2 and converges for ��2. The description in

terms of a quasicondensate is applicable only in the weakly-
interacting regime ��2.

For extremely strong interactions �for example, �=10, see
Fig. 1� the potential energy dominates the total energy and

FIG. 2. �Color online� One-body density matrix g1�x� in the thermodynamic limit for different values of the interaction parameter �. Solid
lines, bosons �upper line�; fermions �lower line�. Long dashed lines, long range expansion for bosons, Eq. �30� �upper line�; for fermions, Eq.
�31� �lower line�. Short dashed line �c,d,e,f�: short-range expansion Eqs. �41� and �47�. Note that the fermionic long-range expansion, Eq.
�31�, is exact for �=1 �c�.
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quantum fluctuations are suppressed. In this regime the role
of quantum statistics becomes irrelevant. This is due to the
onset of the quasicrystalline order, in which particles form a
local crystal lattice so that the exchange effects of quantum
statistics are irrelevant. As a result the one-body density ma-
trices for bosons and fermions are very similar �see Fig.
2�f��. One finds that the fermionic one-body density matrix is
positive in a large region and vanishes otherwise. The short-
range expansion �41� describe quite well both fermionic and
bosonic one-body density matrices. The quasicrystal order is
better probed by density correlations described in the Sec.
VI D.

We have investigated the short-range behavior of g1�x�
numerically and we found a good agreement with the expres-
sion �41�. The results are presented in Fig. 3. This figure
shows the validity of the short-range expansion for different
values of � and allows us to find the region of applicability
of Eqs. �41� and �17�. We see that the analytic short-range
expansion holds in a larger range in the case of fermionic
statistics as the omitted higher order terms of the short-range
expansion are smaller in this case.

We point out that the coefficient c2 in the short-range
Taylor expansion �41� has a minimum for �=1. This is
clearly seen from numerical evaluation of the fermionic one-

body density matrix presented in Fig. 3�a�. Interestingly,
there are pairs of � �for example, ��3/4 and ��3/2� with
the same c2. The numerical results of the short-range behav-
ior of a bosonic one-body density matrix are presented in
Fig. 3�b�. The dominant c2 term in the short-range expansion
in this case is clearly seen for �=1,2 ,3, while for smaller
values of � the nonanalytic correction becomes comparable
to the analytic contribution in the considered range 0.06
�nx�0.5.

We estimate the leading nonanalytic term and find that it
goes as 	x	1+2� both for bosons and fermions. In the regime
��1/2 the nonanalytic part in Eq. �41� provides the leading
contribution 1−g1�z� /n�a��� 	z	1+2�. The point �=1/2 is
very special. Indeed, the kinetic energy �46� diverges at this
point �see Fig. 4�, thus the Taylor coefficient c2 is also diver-
gent. However, this divergence is compensated by the diver-
gence in the nonanalytical term a��� 	x	1+2�, which for �
=1/2 is of the same order. We note that for �=1 the power
of the nonanalytical term becomes integer again and leads to
a cubic correction, as was obtained by Olshanii et al. �19�.
We prove numerically the presence of the nonanalytic term
proportional to 	x	1+2�. The coefficient of this term can in
principal be obtained from a best fit to the numerical data.
We note that while the decay law is the same in bosonic and

FIG. 3. �Color online� Short-range behavior of the bosonic �a� and fermionic �b� one-body density matrix g1�x� in the thermodynamic
limit for different values of the interaction parameter �. Symbols, results of the Monte Carlo simulations; lines, analytic part of the
short-range expansion ���1�, Eqs. �41� and �47�.

FIG. 4. �Color online� Momentum distributions for bosonic �a� and fermionic �b� CSM for different values of the interaction strength.
Lines, in descending value at k=1.5kF, �=10;3 ;2 ;3 /2 ;1 ;3 /4 ;2 /3.
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fermionic systems, the coefficient a��� depends on the sta-
tistics and this leads to drastically different behavior �e.g.,
�=1/5 in Fig. 3�. The short-range nonanalytical behavior is
related to the high momenta tails of the momentum distribu-
tion discussed in the next section.

C. Momentum distribution

The Fourier transformation �6� relates the one-body den-
sity matrix to the momentum distribution. The numerical re-
sults for this quantity are presented in Fig. 4 for the cases of
bosonic and fermionic statistics.

In a system of weakly interacting bosons, the power-law
decay of the one-body density matrix results in the diver-
gence of the momentum distribution for small values of mo-
menta: nk is proportional to 	k	1−�/2 as it follows from Eq.
�32�. This infrared divergence for small � is reminiscent of
Bose-Einstein condensation, i.e., macroscopic occupation of
the zero momentum state. The infrared divergence is present
in the quasicondensate regime for ��2. At �=2 the infrared
divergence becomes logarithmic. From �49� we have an ex-
act result �1� for the momentum distribution,

nk
B = �1

2
ln

2kf

	k	
, 	k	 � 2kf ,

0, 	k	 � 2kf ,

� = 2. �50�

We note that the logarithmic divergence for �=2 separates
the power-law divergence for ��2 and a regular behavior
for ��2, so that �=2 is the critical value beyond which the
quasicondensation disappears.

The momentum distribution for a fermionic CSM is pre-
sented in Fig. 4�a�. In the noninteracting case �=1 the mo-
mentum distribution of fermions is given by the step function
at k= ±kF. For other values of � the steps are absent and the
momentum distribution has a power-law behavior close to
±kF described by Eq. �33�. This is a characteristic of a Lut-
tinger liquid behavior present in the fermionic CSM. For
very large � the interactions completely destroy the Fermi
surface and the momentum distribution is a decaying feature-
less function.

The behavior of the momentum distribution for large mo-
menta contains information about the physics at small length
scales. For instance, as we see from Eq. �50�, the momentum
distribution of bosons at �=2 has a cusp at k= ±2kF. This
discontinuity is a consequence of the oscillating term in the
long-distance asymptotics, Eq. �30� or �49� and is a manifes-
tation of the short-range order. Even for ��2 the presence
of the short-range order shows itself in weaker singularities
of the momentum distribution for even multiples of kF for
bosons and odd multiples of kF for fermions.

Apart from the special integer values of the interaction
parameter � �even for bosons, odd for fermions�, the momen-
tum distribution has nonanalytic high momenta tails decay-
ing as 1/k2�1+��. At the special value �=1/2 the momentum
distribution becomes broad, with tails decaying as 1/ 	k	3,
which leads to a divergent mean kinetic energy ��k2nk dk for
��1/2. In the case of zero-range impenetrable bosons ��
=1� the Eq. �32� yields a 1/k4 ultraviolet behavior and has
been discussed in Ref. �19�.

The short-range order already present the one-body den-
sity matrix and the momentum distribution becomes evident
in density correlations, which we consider in the next sec-
tion.

D. Pair distribution function

The short-range order is best probed by calculating the
pair distribution function g2�x� defined in Eq. �7�. It gives the
probability of finding two particle separated by a distance x.
This function involves the absolute value of the ground state
function and therefore is identical for bosons and fermions.
The inverse square potential of the Calogero-Sutherland
model prevents two particles from occupying the same posi-
tion, so that g2�0�=0. For large interparticle separation the
density correlations decouple and we have a general result
g2�x�→n2 , 	x 	 →	. The pair distribution function has been
studied in Ref. �9�. For distances larger than the mean inter-
particle separation the following result has been obtained

g2�x�
n2 = 1 −

1

2��kFx�2 + 2�
m=1

	
dm

2 ���

�2kFx�2m2/�
cos�2mkFx� ,

�51�

where

dl��� =

�
a=1

l

��1 + a/��

�
a=1

l−1

��1 − a/��

= ��1 +
l

�
��

a=1

l−1 � a

��
�sin��a

�
��2� a

�
� .

�52�

We have calculated the pair distribution function by using
the Monte Carlo method and results are presented in Fig. 5.
One sees that for small values of � the pair distribution func-
tion goes smoothly from zero at short distances to the bulk
constant at large distances. This is characteristic for a weakly
interacting one-dimensional Bose gas or liquid �21�. As the

FIG. 5. �Color online� Pair distribution function for different
values of the interaction strength �. Lines, in descending order of
the value at the first peak, �=10;3 ;2 ;1 ;1 /2 ,1 /5.
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regime of free fermions ��=1� is approached, some oscilla-
tions become visible in the pair distribution. For this value of
interactions the expression �51� gives the exact result

g2�x�
n2 = 1 −

sin2 kFx

�kFx�2 , � = 1. �53�

It is interesting to note that the powers characterizing the
decay of the oscillating terms in the pair distribution, Eq.
�51� and in the one-body density matrix of bosons, Eq. �30�
are closely related. Employing the language of electronic
systems these oscillating terms can be referred to as Friedel
oscillations. It is a general feature that these oscillations be-
come more pronounced as one moves to stronger interac-
tions, since they arise due to the tendency of repelling par-
ticles to form a quasicrystalline order. Friedel oscillations in
the Calogero-Sutherland model have been discussed in Ref.
�29� and similar oscillating behavior of the same origin has
also been observed in numerical simulations of the strongly
interacting limit of one-dimensional bosons with deltalike
interactions �21�.

As interactions are made stronger the amplitude of oscil-
lations become larger and the number of visible oscillations
is increased �see Fig. 5�. Although the quantum fluctuations
prohibit the formation of a “true” crystal, this behavior of the
Calogero-Sutherland model can still be described in terms of
the local crystalline order as was pointed out by Krivnov and
Ovchinnikov in Ref. �30�. In the next section we show how
the quasicrystal order manifests itself in the static structure
factor.

E. Static structure factor

Density correlations characterized by the pair distribution
function of the preceding subsection are conveniently probed
by measuring the static structure factor �8�. It is related to the
dynamic structure factor S�k ,�� which characterizes the
scattering cross section of inelastic reactions where the scat-
tering probe transfers momentum �k and energy �� to the
system. In atomic gases it can be measured directly by the
Bragg spectroscopy technique. By integrating out the � de-
pendence one obtains the static structure factor Sk. The nu-
merical results for this quantity in the Calogero-Sutherland
model are summarized in Fig. 6 for different interaction
strengths.

The behavior of the static structure factor for small mo-
menta can be described by a hydrodynamic approach. The
Feynman formula �31� Sk=�2k2 /2m�k relates the static struc-
ture factor to the excitation spectrum exhausted by one
branch �k. This is the case, when k is small and the excita-
tions are phonons �k= �kc with the speed of sound c. This
leads to linear behavior for small momenta Sk= � 	k 	 /2mc.
The speed of sound is related to the compressibility �
=mc2=n�� /�n, where there chemical potential is found
from �44� as �=�E /�N. Thus we have

Sk =
	k	

2�kF
, k → 0, �54�

in full agreement with the numerical results as can be seen in
Fig. 6. Large momentum excitations behave as free particles

�k=�2k2 /2m, so the static structure factor behaves as Sk
→1 in the limit of large momenta.

In the regime of weak interactions �→0, the static struc-
ture factor is a smooth function, which goes monotonically
from 0 for k=0 to unity for large values of momenta �see
�=1/5 ;1 /2 in Fig. 6�. This behavior is very similar to that
of rarefied weakly interacting gases �21�. The critical point at
which a cusp at k=2kF appears is �=1. For this critical value
of � the static structure factor can be written explicitly and
takes a very simple form

Sk = � 	k	
2kF

, 	k	 � 2kF,

1, 	k	 � 2kF,

� = 1. �55�

The linear phononic behavior continues until 	k 	 =2kF, where
the asymptotic constant value is reached. This special behav-
ior is a result of averaging the dynamic form factor S�k ,��
over all excitation branches �see, for example, Ref. �32��.

For ��1 a peak appears in the static structure factor in-
dicating the onset of the quasicrystalline order. In this regime
the correlations between particles on a short distance scale
�of order several interparticle separations� become stronger.
Similar physics was observed in numerical simulations of the
metastable gaslike state in a short-range attractive potential
�“super-Tonks-Girardeau” system �22�� or with dipole-dipole
interactions �23�.

By further increasing the strength of interactions, the peak
at k= ±2kF becomes higher ��=2;3 ;10 in Fig. 6�. For ex-
tremely strong interactions several peaks can be observed
�see, as an example, �=10 in Fig. 6�. The absence of coher-
ence observed in the off-diagonal correlations in this regime
allows us to conclude that for extremely large values of � the
Calogero-Sutherland model behaves as a lattice of classical
particles, the one-dimensional Wigner crystal studied in
Ref. �30�.

FIG. 6. �Color online� Static structure factor for different values
of the interaction strength �. Dashed lines, low momenta phononic
behavior, Eq. �54�. Interaction parameter �in order of decreasing
slope at small k�, �=1/5;1 /2 ;1 ;2 ;3 ;10.
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VII. DISCUSSION AND CONCLUSIONS

The present study of the correlation functions of the
Calogero-Sutherland model allows us to make conclusions
about the dominant order, or rather, quasiorder present in the
system as a function of the interaction parameter �. We con-
centrate on the case of bosons and identify the following
physical regimes at zero temperature.

For small values of � the system is weakly interacting and
stays in a gaslike �or liquidlike� state. There is a substantial
degree of phase coherence in the system as follows from the
slow decay of the off-diagonal correlations. For ��2 the
bosonic momentum distribution nk has an infrared diver-
gence. This quasicondensate regime is reminiscent of
Bose-Einstein condensation, where the k=0 state is macro-
scopically occupied. The divergence in the momentum dis-
tribution disappears completely for ��2, thus at this inter-
action value the Calogero-Sutherland system crosses over
from a quasicondensate to a noncondensed state for �=2 �see
Fig. 7�.

By increasing the strength of interactions one finds the
appearance of strong positional ordering of particles �quasi-
crystal� as indicated by the large amplitude of slowly decay-
ing oscillations in the density-density correlation function
g2�x�. The critical value for this crossover from a liquid to a
quasicrystal state is estimated as �=1, where a singularity in
the static structure Sk appears �see Fig. 7�. For stronger in-
teractions the particles form a one-dimensional Wigner crys-
tal with a dominant crystalline order and absence of coher-
ence.

The region 1���2 is very special as the one-body den-
sity matrix exhibits quasi-off-diagonal long-range order
while there is a quasicrystalline order in the static structure
factor. We denote this regime, where those two features are
simultaneously present, as a quasi-super-solid in analogy
with the super-solid state �33�. The word “quasi” is necessary
while talking about the phase diagrams in a homogeneous
one-dimensional system, as there is no true long-range order
and no true phase transitions can take place in such systems
�34�. The change of the regimes are actually crossovers. In-
deed, the long-range asymptotics of the one-body density
matrix �30� include both a slow power-law decay term as
well as oscillating terms for all values of �. The crossover
takes place when one kind of term becomes dominant over
the other terms.

Aside from the question of quasi-long-range order related
to the behavior of the correlation functions for large dis-
tances on the scale of the interparticle spacing, we found
interesting phenomena on the scale of the mean distance be-
tween particles. We found intriguing behavior in the special

region ��1/2 where both the potential and kinetic energies
are divergent, while the total energy and the compressibility
remain finite. The divergence first occurs for the critical
value �=1/2 corresponding to the critical value of interac-
tions beyond which the fall towards the center takes place
�20�.

The presented study of the correlation properties of the
Calogero-Sutherland model in different physical regimes is
of a high fundamental interest since this model provides one
of the rare examples of integrable systems for which the
correlation functions can be calculated exactly. Our descrip-
tion holds in physical regimes ranging from a weakly inter-
acting gas to a strongly correlated crystal-like phase. We note
that in an arbitrary one-dimensional gapless system support-
ing long-wavelength phonons, the ground state wave func-
tion can be approximately written as �4� �35�. This general
description holds at distances where the hydrodynamic ap-
proach is applicable. So, the study of the Calogero-
Sutherland model is important for understanding the long-
wavelength properties of systems with linear low-momenta
excitation spectra �also known as Luttinger liquids�.

Apart from its theoretical importance, the Calogero-
Sutherland model is relevant for several realistic physical
systems. The classic example is provided by the compress-
ible borders of fractional quantum Hall droplets �36�. The
experiments on vicinal crystal surfaces �37� provide yet an-
other physical realization of CSM. Recently, the particular
case �=1 of bosonic CSM has been realized in the series of
experiments �28� with tightly confined cold atomic gases.

It is important to stress that regardless of the absence of
the true long-range order, the dominant quasiorder can reveal
itself in mesoscopic confined systems due to their finite size.
The study of physical regimes in mesoscopic systems con-
fined in harmonic potentials are certainly of interest and will
be considered in our future studies. Among other open ques-
tions one can name the time-dependent correlations as well
as correlation functions of the Calogero-Sutherland model at
finite temperature.
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APPENDIX: ANALYTICAL CONTINUATION OF An

We show how to perform an analytic continuation of the
constant

FIG. 7. �Color online� Phase diagram of the Calogero-
Sutherland system. See text for the explanation.
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to m=�. The first factor on the right-hand side of this expression can be continued straightforwardly. Consider the logarithm
of Am

2 ,

ln�Am
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� − 2 ln ��m/2 + a

�
�� . �A2�

We use the following integral representation �38� for the logarithm of Euler’s gamma function:

ln ��z� = 

0

	 dt

t
� e−zt − e−t

1 − e−t + �z − 1�e−t� �A3�

to represent each term on the right-hand side of �A2�. Summing finite geometric and arithmetic series under the integral we get

ln�Am
2 �2�m/2 + 1�

��m + 1� � = 

0

	 dt

t
e−t�m2

2�
+

�1 − e−mt/2��2 − et�e−2mt/� − 3e−mt/� + 2e−mt/2��
�1 − e−t��et/� − 1� � , �A4�

which under replacement m=� yields the result �22�.
The calculation in the fermionic case is similar. We have

Cm
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Taking the logarithm of this expression, using the integral representation �A3� and setting m=� yields the result �26�.
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